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Selection of parameters for
numerical predictions

D. MUIR WOOD, N.L. MACKENZIE and A.H.C. CHAN,
Department of Civil Engineering, Glasgow University

Data from a test on reconstituted kaolin performed under axially symmetric
stress conditions in a true triaxial apparatus are used to generate sets of values of
soil parameters for use with the (modified) Cam clay model. First, parameters are
chosen by the traditional route, one at a time: slope of normal compression line
and slope of unloading line in the compression plane, critical state stress ratio,
and elastic property. This fails to take any direct account of the shear strains that
occur and yet it is in order to predict the response of a soil to shearing that a
model such as Cam clay is normally applied. An alternative procedure adopts an
optimisation strategy to produce a simultaneous best fit set of all parameters in
order to match any section or sections of the test that are reckoned to be of
importance. The values of the parameters thus deduced are rather different, but
the modzl reproduces the soil behaviour more accurately.

Introduction

The Cam clay models have become firmly established in the language of
soil mechanics since their first introduction some thirty years ago
(Roscoe and Schofield, 1963; Roscoe and Burland, 1968). Over the past
two decades, in particular, they have been widely used in numerical
analysis of geotechnical structures, especially those involving the load-
ing of soft normally consolidated or lightly overconsolidated clays
(Wroth, 1977). The Cam clay models have an important pedagogic role
to play in illustrating the way in which rather simiple but complete
models of soil behaviour can be developed by a logical extension from
consideration of ideas of yielding and plastic hardening of ductile metals
(Schofield and Wroth, 1968; Muir Wood, 1990). The appeal of the Cam
clay models lies in their compactness, in the very small number of soil
parameters — five, plus permeability — that are necessary for a
complete definition of the models, and in the physical basis of all these
parameters. The Cam clay models formed a central element of a number
of courses on Critical State Soil Mechanics that were presented in Britain
and Europe between 1975 and 1985 (Wroth et al., 1975, 1979, 1981, 1982,
1985) and much was always made of the fact that the five parameters
were not really new parameters, but familiar quantities seen in a new
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(truer) light. Thus the slope M of the critical state line in the P':q
effective stress plane is linked with the angle of shearing resistance ¢’;
the slopes A, k of normal compression and unload-reload lines in the
viln p’ compression plane are linked with compression and swelling
indices C;, C;; the location of the critical state line in the compression
plane is defined by a reference specific volume I' which can be linked
with liquid limit wi; and some second elastic property is required such
as shear modulus G or Poisson’s ratio ». The model takes care of the
rest.

The continuation of this sales tactic is therefore that no special tests
are required to determine the values of the soil parameters: testing can
continue as before and the five parameters can be picked off one by one.

The fundamental feature of these soil models — and the vital message
of critical state soil mechanics — is the importance of volumetric strains
and the parallel significance of change in volume and change in effective
stress. These models belong to a more general class of volumetric
hardening models. The models are driven by the volume changes
occurring during normal compression; shear strains are deduced in-
directly by introducing a family of plastic potentials (which in the Cam
clay models happen to be identical to the yield loci, but which in other
volumetric hardening models are not necessarily so (Mouratidis and
Magnan, 1983)).

If soil parameters are being chosen in order that the model can be
made to give a good general fit to a complete range of laboratory test
data — particularly if these data are obtained from tests on reconstituted
clays which undergo large volume changes as they are consolidated
from slurry — then this volumetric basis for the parameter selection has
a certain logic. If, however, the model is to be used for prediction of
field response of natural soils then the volumetric response may be
much less important than the distortional response, which is hardly
considered during the process of parameter selection. Undrained de-
formation is a purely distortional process — neatly described in
volumetric hardening models as the result of balancing equal and
opposite recoverable and irrecoverable volumetric changes — and a
strong emphasis on volumetric response in selection of parameters may
in fact be particularly unhelpful in modelling undrained behaviour.

Equally, the models are strongly governed by the choice of critical
state stress ratio M which describes an ultimate condition of infinite
distortion. In practice, numerical predictions are required of deforma-
tions of geotechnical structures at working loads far removed from
collapse conditions.

Numerical modelling is always an extrapolation from the known
region of experimental data towards the unknown region of field
response. This paper explores the heretical idea that the reputation of
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the Cam clay models could be improved still further if parameter
selection were made a more interactive process, with the selector more
consciously choosing experimental data from laboratory (or field) tests
with stress levels, stress states and stress paths close to those for which
numerical predictions were subsequently required.

Cam clay

For the purposes of this paper, the name Cam clay will be assumed to
refer to the modified Cam clay model of Roscoe and Burland (1988)
rather than the original Cam clay model of Roscoe and Schofield (1963).
Whatever the historical origins of the two models it has been found
easier to explain them through an assumed shape of yield locus and
coincident plastic potential, rather than through an assumed plastic
energy dissipation function and the assumption of normality. It is then
natural to start with the (modified) Cam clay ellipse rather than the
original Cam clay bullet.

The models are well known and do not require detailed description.
Loading and unloading at constant stress ratio n = g/p’ are associated
with linear response in the semi-logarithmic compression plane v:In p’,
thus introducing parameters A and « (Fig. 1(})). One-dimensional
normal compression in an oedometer is a constant stress ratio loading
process so that the validity of the assumption of linearity from which A
emerges can be directly assessed in routine testing. One-dimensional
unloading is not a constant stress ratio unloading process so that the
selection of k and its link with swelling index C; are less soundly based.

Yield lodi in the p':q effective stress plane are assumed to be elliptical,
passing through the origin, centred on the p’ axis, with the slope to the
top of the ellipse given by M (Fig. 1(4)). The assumption of coincident
yield loci and plastic potentials, together with the assumption that the
soil is volumetric hardening — so that change in size of the yield loci
implies irrecoverable plastic volume change — in turn implies that the
soil ends with critical states at the stress ratio n = M. Evidently the
existence of critical states can be assessed if laboratory tests are taken to
sufficiently large distortions. Certainly failure stress ratios can be
determined. Neither the shape of the yield loci, which has an essential
but hidden role in all model predictions, nor the coincidence of plastic
potentials and yield loci is ever actually investigated in routine testing.

The several assumptions lead to the plastic compliance relationships:

8ef = (A — ) [(M? — 77) 8p’ + 2mdql/[vp' (M* + 77)] O
8ef = (A — K)[298p’ + {4n/(M? - )} 8ql/lvp'M* +7))] ()

which apply whenever the changes in effective stress imply a change in
size of the yield locus. The elastic compliance relationships:
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Fig. 1.(a) Elliptical Cam clay yield locus in p':q effective stress plane;
(b) isotropic compression line (iso—ncl), critical state line (csl), and unloading—
reloading line (url) in v:Inp' compression plane

8ep, = [/(vp")16p’ 3
8¢5, = [1/(3G)]8q (4a)

or
8eg = [2(1 + 1)x18q/[9(1 — 21)vp'] (4b)

apply for all changes in effective stress. The symbols for volumetric and
distortional increments, 8¢,, 8¢q, are chosen following Calladine (1963)
to indicate work conjugacy with the volumetric and distortional effective
stresses p’, q. .

Shear modulus G, or Poisson’s ratio v, enters as a second elastic
parameter, to complete the description of the isotropic elastic properties
of the soil. It is recognised that with bulk modulus K = vp'/« prop-
ortional to mean effective stress p’ it is not thermodynamically accept-
able to have shear modulus also proportional to p’, as is implied
through the selection of a constant value of Poisson’s ratio » (Zytynski et
al., 1978). This will in practice cause problems only when predictions are
required of response of soils to cycles of loading and unloading.

The fifth soil parameter is required in order to be able to calculate the
current specific volume v from the known stress history of the soil. If the
size of the current yield locus is given by po (Fig. 1(a)) then:

v = = Aln(po/2pf) + « In(po/2p’) (5

where I and pr'define a reference point on the critical state line in the
compression plane. Conventionally pr'= 1 measured in whatever units
of stress are being used. A stress of 1kPa is extremely low for most
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engineering purposes. If pr’=4kPa then I'=1+G,w,, indicating the
link between this reference volume I' and liquid limit (Muir Wood,
1990). The choice of this reference stress would not be important if the
v:In p’ relationships were indeed linear over the stress range from p;* to
the stresses of engineering interest. Experimental evidence does not
always support this (Butterfield, 1979) and since the range of mean
effective stress experienced in typical geotechnical structures is not great
it might be more rational to choose the value of pi* to match the ambient
mean effective stress and then choose I' to fit the in situ specific volume.

Experimental data

Data to be fitted with the Cam clay model are obtained from the series of
experiments performed in the Cambridge True Triaxial Apparatus
(Wood and Wroth, 1972; Airey and Wood, 1988) and described by Wood
(1974). These tests were performed on samples of spestone kaolin
(wp = 0.40, wy = 0.72, 73% finer than 2 um) consolidated in the True
Triaxial Apparatus from a slurry prepared at a water content equal to
twice the liquid limit. The True Triaxial Apparatus permits independent
control of three principal stresses (or principal strains) without allowing
any rotation of principal axes. Stress paths can be continued without
interruption from consolidation to shearing (within the deformation
capability of the apparatus).

The (effective) stress path of test L1 is shown in Fig. 2. It consists of
anisotropic compression (n =0.3) to p’ = 150kPa and unloading
(OAB), followed by isotropic reloading (CDF) with two cycles of
constant p’ loading and unloading (DED) with p’ = 100 kPa; FGF with
p’ = 150kPa. The whole test was performed with two stresses equal to
each other (0, = 03) and could in principle therefore have been
performed in a conventional triaxial apparatus.

Proceeding incrementally, the value of A can be deduced from the

50 100 150 kPa
. p'
Fig. 2. Stress path of test L1: OABCDEDFGF
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Fig. 3. Anisotropic compression and unloading in v:ln p’ plane

initial anisotropic compression OA (Fig. 3) giving A = 0.245. The value
of « can be deduced from the anisotropic unloading AB or the isotropic
reloading (CD, DF). Volumetric unload-reload cycles are not the ideally
elastic processes that they are assumed to be in Cam clay, and there is
room for interpretation in selecting a value of . (Kinematic hardening
models such as the ‘bubble’ extension of Cam clay described by
Al-Tabbaa and Wood (1989) are introduced precisely to improve the
match with the experimentally observed unload-reload hysteresis.)
From the data shown in Fig.' 3, a value of k = 0.027 could be deduced
from the initial slope of the v:In p’ relationship, immediately after the
change in loading direction. Alternatively, a value x = 0.042 could be
chosen as an average slope of the complete unloading or reloading
process.

Study of the shape of the deviatoric stress:strain relationship (Fig.
4(a)) suggests that the ultimate stress ratio which would have been
reached on section FG if shearing had been continued further would
have been about 0.7-0.75. The implied value of M is consistent with
values observed in other true triaxial tests reported by Wood (1974).

The stress:strain relationship for the final loading stage FG is shown
in Fig. 4(a). The initial section should, according to the Cam clay model,
be purely elastic, because of the size of the yield locus which was
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Fig. 4. Deviatoric stress:strain response for (a) stage FG (O: experiment; A:
wrediction based on viswal solection of parameters; B: oplimised fit; C: optimised
/ i’ | / /
fit fo shage FG for 0< n<10.5); and (b) stage DED (®: experimenl; X: elastic

prediction; Y; optomem fit allowoimg premature yield)
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established during the initial anisotropic consolidation, and can be used
to estimate a value of tangent shear modulus G, = 7.5 MPa. Alternative-
ly a secant shear modulus G, = 3.16 MPa could be calculated for the
increase of stress ratio from zero to 0.3, the entire elastic region
according to the Cam clay description of this test. It is well known that
for most soils the strain range over which the response is truly elastic is
extremely small. However, in any situation where the plastic response
of the soil is expected to become dominant, as for the soft clay being
considered here, the details of the pseudo-elastic response are perhaps
less important.

These values of shear modulus can be converted to equivalent values
of Poisson’s ratio. The measured specific volume at the start of the
shearing stage FG was v = 2.479, the mean stress p’ = 150 kPa. With
k = 0.027 this implies a value of bulk modulus K = vp'/x = 13.8 MPa.
Poisson’s ratio can be calculated from the relationship

v = (3K — 2G)/(6K + 2G) (6)

assuming that the clay is behaving isotropically. The values of Poisson’s
ratio are then » = 0.270 using the tangent shear modulus G, or
v, = 0.394 using the secant shear modulus G;. The values of Poisson’s
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Fig. 5. Volumetric and deviatoric strain for DED (), FG (0)

ratio would be reduced if higher values of x were used to calculate
correspondingly lower values of bulk modulus. Rather similar values of
Poisson’s ratio can be calculated from the intermediate loading cycle
DED (Fig. 4(b)): the initial tangent stiffness gives G; = 5.0MPa and
v = 0.274, the overall secant stiffness gives G; =1.49MPa and
v, = 0.424. )

Examination of the experimental data shows that the supposedly
elastic cycle DED and the initial section of the loading FG are
accompanied by some volumetric straining, even though the stress
changes are entirely distortional (8p’ = 0) (8e,/6eq = 0.239 for DED,
8ep/8eq = 0.505 for FG) (Fig. 5). Such response could be described by an
anisotropic elastic model such as that proposed by Graham and Houlsby
(1983), but that extra refinement has not been considered here, even
though the effect is clearly not insignificant.

If it is assumed that the critical state had been reached at point-G, the
maximum deviator stress applied during the final shearing, then the
value of I' could be calculated from the corresponding specific volume
v = 2.388 and mean effective stress p’ = 150kPa. With a value of
A = 0.245, this implies I' = 3.616. Continuing the argument of the
previous section, however, it may be more useful to be able to set the
value of the specific volume at the start rather than at the end of
shearing. A reference specific volume can be obtained by fixing the
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location of the isotropic normal compression line in the compression
plane:

v=N-Alnp’ V4]
According to the Cam clay model:
N=T+@A-«)In2 (8)

Combination of the specific volume and mean effective stress at F with
the known stress history, through the Cam clay model with A = 0.245,
k = 0.027, M = 0.75, leads to a value of N = 3.739 (which in turn

implies, from (8), I' = 3.588).

Optimisation procedure

As an alternative to direct individual estimation of values of parameters
for the Cam clay model the possibility of using an automatic optimisa-
tion procedure to produce a simultaneous best fit set of parameters has
been explored. Such a procedure can be adapted to ensure that the fit is
obtained over the range or ranges of stress change that are expected to
be relevant in a particular application — with the emphasis on the ability
to match and predict response under working loads which may not
approach failure.

The stress:strain response that emerges from a constitutive model is
an extremely non-linear function of several model parameters. In only a
very few cases will it be possible to obtain an analytical solution to the
search for the optimum set of parameters, and a numerical procedure is
to be preferred. The procedure adopted here is that proposed by
Rosenbrock (1960), and the program used for the optimisation process
has been adapted from a program written by Klisinski (1987).

The program searches for the set of n parameters that produces the
minimum value of an objective function F which is a measure of the
overall difference between experimentally observed and numerically
predicted responses. With a given starting set of parameters, the
program varies each parameter in turn in order to discover which
direction in n-dimensional parameter space leads to the greatest im-
provement in the value of F. A new set of parameters related to the first
by the direction of maximum improvement is then chosen and the
procedure is repeated. The process is adaptive in that the direction of
maximum improvement will in general involve variation of more than
one of the n parameters: a set of n mutually orthogonal directions of
progressively decreasing improvement is computed and the search for
further improvement makes use of this previously determined set of
directions.

The procedure moves through n-dimensional parameter space in the
direction of greatest change of the function F, but since it retains
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Fig. 6. (a) Objective function: shortest distance between experimental point and
predicted curve; (b) alternative fits to experimental data

information from each previous step concerning the relative advantage
of moving in each of the n orthogonal directions, it is more robust and
more rapidly convergent than the simpler method of steepest descent. It
is relatively simple and places no constraint on the nature of the
objective function F. It relies on the continuity and smoothness of F but
with a very irregular function it may be sensitive to starting point, and
may converge on a local minimum rather than the global minimum of
the function.

The choice of objective function F which is to be minimised is
essentially arbitrary. Some measure of least squares fit is an obvious
candidate. Klisinski (1987) uses the square root of the sum of the squares
of the shortest distances from each experimental point to the piecewise
linear path joining the theoretical prediction points (with appropriate
scaling values to allow for the different dimensions of stress and strain)
(Fig. 6(a)). This has a potential limitation since the closest experimental
and calculated points may correspond to rather different points on the
path. For example a curve (A in Fig. 6(b)) which stays close to the shape
of the data but which is much ‘longer’ or ‘shorter’ than the experimental
curve may be a ‘better’ fit than a curve of the correct form but slightly
displaced (B in Fig. 6(b)), even though curve B reproduces the nature of
the experimental curve rather better. To try to overcome this difficulty
Klisinki adds a term to the objective function equal to the difference
between the end points of the experimental and calculated paths.
However, this term becomes less important as the number of data points
increases, and could perhaps better be made proportional to the number
of data points. This definition of objective function may also have
difficulties with cyclic paths, where it is not always straightforward to
identify, numerically, the relevant closest segment. Such an objective
function is, however, useful when the control of the test to be predicted
involves a mixture of stress and strain constraints, such as strain control
of a specimen tested under conditions of plane stress, or stress control of
a specimen tested under conditions of plane strain.
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It has been preferred here to define the objective function directly in
terms of the differences between corresponding points on the calculated
and experimental paths, using experimental values of one set of
quantities to control the prediction. For example, in stress driven paths
the calculated path is forced to pass through all the stress points, and
the objective function is simply the sum of the squares of the strain
differences.

Both these objective functions have the disadvantage that sections of
the path with widely spaced experimental points will receive less
weighting than sections with many points. This could be overcome by
weighting each increment of the objective function by some measure of
the distance between adjacent points on the experimental path.

The program requires a file of the experimental data points to be
fitted; a file containing the control path which provides input for the
prediction; and a file which specifies the lower and upper bounds to the
n parameters, initial values of these parameters, and an indication of
whether each parameter is allowed to be varied as part of the
optimisation procedure.

The Cam clay model is most conveniently described in terms of the
strain response to changes in effective stress. The model is complete in
the sense that it is able to make predictions of response in all regions of
strain space — including independent variation of all three principal
strains, rotation of all three principal axes. However, the structure of the
model implies that not all changes in stress are permissible. Any attempt
to cause plastic deformations with stress ratio 7> M leads to collapse of
the yield surface: the soil cannot support outward stress increments,
and a section of stress space (which depends on the current size of the
yield surface) is thus inaccessible. It is therefore preferable to use as the
control path the observed strain path even where, as for the true triaxial
tests used here, the test has been conceived as a stress-controlled test,
because while every strain increment implies a corresponding stress
increment the converse is not always true.

Results
Although the primary objective is to improve the prediction of the
model during the shear stage FG, it is of interest to observe how the
optimisation procedure attempts to cope with other stages of the test.
The volumetric data (specific volume and mean effective stress) from the
initial anisotropic consolidation OA have been used to obtain a value for
= 0.245. The optimisation program prefers a slightly higher value
A = 0.272, partly because the definition of objective function F implicitly
gives greater weight to the data at higher stresses. The optimisation
procedure for this stage can also present an opinion on the values of the
other parameters because these control the link between stress ratio 7

506



PARAMETERS FOR NUMERICAL PREDICTIONS

and ratio of distortional to volumetric strain 8e4/de,. Cam clay is not
very good at getting this link correct: Muir Wood (1990) notes that Cam
clay tends to predict values of earth pressure coefficient at rest Ko which
lie above Jaky’s (1948) empirical expression

Ko = 1—sin ¢’ 9

unless simultaneous low values of both v and A = (A—«)/A are
assumed, implying dominance of the deformation by low Poisson’s ratio
elastic response. The optimisation program suggests v = 0.37 but
k = 0.26, implying A = 0.04, and M = 0.86.

The procedure can also be applied to the anisotropic unloading stage.
The average value of « = 0.04 for this stage is confirmed, but there is a
problem with the search for the optimum value of v (the only other
parameter which has any effect during this elastic unloading). A very
small positive shear strain was observed during unloading, while the
deviator stress q was reducing. This pattern of response cannot be
predicted with an isotropic elastic model. The best the program can dois
to set v=0.5, making the shear modulus as low as possible, so that the
predicted stress path shows no change in g.

The cycle of loading and unloading DED, with p’ =100 kPa, is
expected to be purely elastic according to Cam clay, with the known
stress history. The observed, typically hysteretic, shape of the stress -
strain response on this cycle (Fig. 4(b)) clearly conflicts with this
expectation, and the program, not surprisingly, is not particularly happy
in trying to fit the data varying only G, or « and ». (Although this is a
purely distortional stress path, both « and v are required in order to
compute the value of the shear modulus.) The objective function F in
this case seems to be rather flat and undulating (a Cambridge-like
landscape) with a number of false minima: convergences are obtained
with » = 0.12, x = 0.15 but also with » = 0, x = 0.34 (Fig. 4(b): line X).

With M = 0.75, the size of the yield. locus created by the original
consolidation OA is py = 174 kPa. If this known history is ignored then
the observed behaviour on cycle DED can be better matched with an
elastic—plastic Cam clay prediction with ps = 130 kPa, and with
G = 3.25MPa, k = 0.20, A = 0.26, M = 0.68 (Fig. 4(b): curve Y). This is
a more robust minimum to which the optimisation process is able to
converge from several different starting points. Whether such a distor-
tion of the actual history would be acceptable from an engineering point
of view is a separate issue. Besides, the value of shear modulus that has
been selected implies a negative value of Poisson’s ratio.

The final shearing FG is best fitted with the set of parameters
G = 4.09MPa, « = 0.35, A = 0.62, M = 0.82 (Fig. 4(a): curve B). The
optimisation procedure is happy to choose the size of the yield locus at
the start of shearing to be pg = 178kPa, which is surprisingly but
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gratifyingly close to the value p5 = 170 kPa calculated from the known
history with M = 0.82. This is again a rather robustly convergent set of
parameters. It might be suggested that the value M = 0.82 gives a truer
estimate of the stress ratio towards which the stress:strain response is
actually heading. Again the chosen combination of shear modulus and «
implies a negative value of Poisson’s ratio. If it is required to restrict the
search to »>0 then the optimum fit is obtained with v=0.0, x = 0.18,
A =045 M= 0.82. It is significant that the value of (A—«) has
remained almost the same, while the individual values have changed: it
is (A — k) that primarily controls the magnitude of the plastic distortional
strain increments 8¢qP (eqn. (2)). It is particularly the value of A =1—
/A that is being pulled down, indicating that improved fitting is
obtained by increasing the contribution of the recoverable component of
volumetric deformation. A zero or negative value of Poisson’s ratio,
implying a low ratio K/G

K/G = (2/3)(1 + »)/(1 - 2v) (10
is also apparently beneficial, but the present Cam clay algorithm does
not permit negative Poisson’s ratio to be specified.

However, if the optimisation procedure is applied only to the initial
part of the shearing FG, up to stress ratio n = 0.5, then the optimum fit
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Fig. 7. p':q effective stress paths (a) FG; (b) DED (0, ®: experiment; A:
prediction based on visual selection of parameters; B: optimised fits; C: optimised
fit to stage FG for 0 <7 <0.5)
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is obtained with G =50MPa, =043, A= 0.58, M =0.78 and
po = 172kPa (Fig. 4(a): curve C) (or v = 0.0, x=0.13, A =0.28,
M = 0.80, again with the same difference (A — k) being chosen) — but
these sets of parameters give a worse overall fit to the data of the whole
shearing stage. Clearly the choice of parameters can be tuned to match
the data over a selected range of interest. Both curves B and C in Fig.
4(a) provide a major improvement over the prediction based on the
visual, stepwise selection of parameters (curve A).

The volumetric response has not been mentioned so far. The strain
path is used as input to control the prediction; the success of the
volumetric response can be judged by comparing the predicted stress
paths with the (applied) constant mean stress paths (Fig. 7(a), (). In
detail these paths are of course very sensitive to erratic changes in
direction of the (experimentally derived) strain paths, particularly with
the visual stepwise selected parameters (curves A). The optimisation
procedure is very successful in matching the actual stress changes

(curves B).

Discussion and conclusions

The stress path method (Lambe, 1967) seeks to encourage engineers to
match laboratory and field stress paths in order to be able to estimate
field deformations in a more rational way. Estimation of field deforma-
tions is more readily achieved by numerical analysis than by hand
calculation, and consideration of stress paths encourages engineers to be
aware of the nature of the extrapolation that is implied in the numerical
ood, 1984). It is a logical extension then to encourage
ke their numerical models match the experimental data
over the ranges of stress or strain changes that are actually expected to
be important. Clearly this will often be an iterative process, with stress
paths that emerge from numerical analyses performed for working loads
being used to define the range of stress in laboratory tests over which
the optimum set of soil parameters should be assessed.

The possibilities of optimisation in parameter selection have been
presented here for just one test, to illustrate some of the problems that
may emerge. It would normally be preferable to combine data from
several tests, either repeating the response on a single path, to provide
some information about reliability of experimental data, or in order to
increase the volume of relevant stress hyperspace over which data have
been gathered. Different tests can be assigned different weights in the
optimisation procedure in order to reflect assessments of test quality or
relevance to the particular prototype problem.

It will be noted that no suggested optimum values of T or N have
been quoted. The Cam clay algorithm used here is typical of those used
with finite element programs (see, for example, Britto and Gunn (1987))

predictions (W
engineers to ma
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in that it expects the initial size p; of the yield surface to be specified at
the same time as the initial effective stresses. The initial specific volume
v; is required in order that strain increments may be calculated from
(1)~(4) but the link between v;, pp; and initial mean effective stress p{
through N, A and « is not forced:

vi = N=Alnpg + «In (psi/p’) (11)

the value of pj; becomes an optimisation variable, whereas comparison
and combination of tests with different consolidation histories requires
that N or I’ be used instead. This merely requires a minor program
modification.

It would of course be quite unwise to use such an optimisation
procedure without interaction with an informed user. The process
cannot be allowed to become a ‘black box’. The user needs to ensure that
the parameters that are chosen are indeed reasonable, and needs to be
intelligent in choosing data which cover the appropriate stress level and
stress and strain ranges. The objective function for a model like Cam
clay has many minima, and it is clearly sensible to seed the optimisation
process with initial values which have been deduced from visual
interpretation of the experimental observations in the traditional
manner. :

Nevertheless, releasing the Cam clay parameters from their physical
origins, and concentrating the prediction on stress changes of prototype
interest, improves the performance of the model. It remains a simple
model, requiring a small number of soil parameters, and it may be
preferable to tune it to give a good local prediction of response, rather
than to tune it to the global response of the soil and still to expect it to
perform well locally.
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